Logotipo del repositorio
  • English
  • Español
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
Inicio Ciencia Abierta UBB Comunidades y Colecciones Repositorio ANID Estadísticas
  • English
  • Español
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "GILDA ELENA VARGAS MAC-CARTE"

Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
  • Imagen por defecto
    Publicación
    ANÁLISIS COMPARATIVO DE TÉCNICAS DE PREDICCIÓN PARA DETERMINAR LA DESERCIÓN ESTUDIANTIL: REGRESIÓN LOGÍSTICA VS ÁRBOLES DE DECISIÓN
    (ACTAS DEL XIX CONGRESO CHILENO DE TICS PARA LA EDUCACIÓN (TICXED 2018), 2018)
    MÓNICA ALEJANDRA CANIUPÁN MARILEO
    ;
    ELIZABETH ELIANA GRANDÓN TOLEDO
    ;
    GILDA ELENA VARGAS MAC-CARTE
  • Imagen por defecto
    Publicación
    COMPARATIVE ANALYSIS OF PREDICTION TECHNIQUES TO DETERMINE STUDENT DROPOUT: LOGISTIC REGRESSION VS DECISION TRESS
    (37TH INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY, SCCC 2018, 2018)
    LUIS ALFREDO PÉREZ AGUILERA
    ;
    MÓNICA ALEJANDRA CANIUPÁN MARILEO
    ;
    ELIZABETH ELIANA GRANDÓN TOLEDO
    ;
    GILDA ELENA VARGAS MAC-CARTE
    CURRENTLY, THE DETECTION OF STUDENTS WHO MAY DROP OUT FROM AN ACADEMIC PROGRAM IS A RELEVANT ISSUE FOR UNIVERSITIES, SO THERE ARE EFFORTS TO EXAMINE THE VARIABLES THAT DETERMINE STUDENTS DROP OUT. DROP OUT IS DEFINED IN DIFFERENT WAYS, HOWEVER, ALL THE STUDIES CONVERGE IN THAT FOR A STUDENT TO DROP OUT A COURSE OF STUDY, SOME VARIABLES MUST BE COMBINED. THIS STUDY PRESENTS A COMPARISON OF PERFORMANCE INDICATORS OF THE CURRENT DROP OUT MODEL OF THE UNIVERSIDAD DEL BÍO-BÍO (UBB), WHICH IS BASED ON LOGISTIC REGRESSION TECHNIQUE AND IT IS COMPARED WITH A NEW MODEL BASED ON DECISION TREES. THE NEW MODEL IS OBTAINED THROUGH DATA MINING METHODOLOGIES AND IT WAS IMPLEMENTED THROUGH THE SAP PREDICTIVE ANALYTICS TOOL. TO TRAIN, VALIDATE, AND APPLY THE MODEL, REAL DATA FROM THE UBB DATABASES WERE USED. THE COMPARISON SHOWS THAT THE PREDICTION OF STUDENT´ DROP OUT OF THE PROPOSED MODEL OBTAINS AN ACCURACY OF 86%, A PRECISION OF 97% WITH AN ERROR RATE OF 14%, BETTER INDICATORS THAN THE CURRENT VALUES DELIVERED BY THE MODEL BASED ON LOGISTIC REGRESSION. SUBSEQUENTLY, THE PREDICTION MODEL OBTAINED WAS OPTIMIZED CONSIDERING OTHER VARIABLES, IMPROVING EVEN MORE THE PREDICTION INDICATORS. HIGHER EDUCATION INSTITUTIONS SHOULD TAKE INTO ACCOUNT THE VARIABLES THAT EXPLAIN THE MOST THE PHENOMENON OF STUDENT S DROP OUT TO IMPROVE THE RETENTION OF THEIR STUDENTS.
  • Imagen por defecto
    Publicación
    ESTIMACIÓN Y PREDICCIÓN DE LAS PROPIEDADES MECÁNICAS EN PINUS RADIATA D. DON DE 30 AÑOS DE EDAD MEDIANTE REGRESIÓN MÚLTIPLE.
    (CIENCIA FLORESTAL, 2007)
    EMMANUEL CARLOS ENRIQUE ROZAS MELLADO
    ;
    GILDA ELENA VARGAS MAC-CARTE

Concepción: Avda. Collao Nº 1202, Casilla 5-C - C.P: 4081112. Fono: +56-413111286

Chillán: Avda. Andrés Bello N° 720, Casilla 447 - C.P: 3800708. Fono: +56-422463000

ciencia-abierta@ubiobio.cl

©2024 Todos los Derechos Reservados – Universidad del Bío-Bío