Logotipo del repositorio
  • English
  • Español
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
Inicio Ciencia Abierta UBB Comunidades y Colecciones Repositorio ANID Estadísticas
  • English
  • Español
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "PABLO ALFONSO CONCHA VEGA"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Imagen por defecto
    Publicación
    A BINARY COMPLETE AND APERIODIC TURING MACHINE
    (International Journal of Unconventional Computing, 2021)
    PABLO ALFONSO CONCHA VEGA
    ;
    RODRIGO ARIEL TORRES AVILÉS
    TURING MACHINES HAVE BEEN STUDIED AS DYNAMICAL SYSTEMS FOR MORE THAN TWO DECADES, FIRST FORMALIZED BY KURKA, PROPOSING A TOPOLOGICAL DYNAMICAL SYSTEM NAMED TURING MACHINE WITH MOVING TAPE (TMT). IT WAS CONJECTURED THAT EVERY TMT HAS AT LEAST ONE PERIODIC POINT. NOWADAYS, THERE ARE SEVERAL EXAMPLES OF APERIODIC TURING MACHINES, DISPROVING KURKA?S CONJECTURE. MOREOVER, ONE OF THESE MACHINES, NAMED SMART, HAS OTHER INTERESTING PROPERTIES LIKE REVERSIBILITY, COMPLETENESS, APERIODICITY, TOPOLOGICAL MINIMALITY, AMONG OTHERS. THIS MACHINE HAS FOUR STATES AND WORKS OVER AN ALPHABET OF THREE SYMBOLS. IN THIS RESEARCH, WE STUDY THE DYNAMICAL PROPERTIES OF BINSMART, A 2-SYMBOLS RECONSTRUCTION OF THE MAIN DYNAMIC OF SMART MACHINE. THIS MACHINE RESULTS TO BE APERIODIC, TOPOLOGICALLY MINIMAL (THEREFORE TRANSITIVE) BUT NOT TIME-SYMMETRIC, AS IT IS NOT A DIRECT TRANSLATION OF THE ORIGINAL MACHINE. WE ALSO PROVE THAT ITS T-SHIFT IS A PRIMITIVE SUBSTITUTION.

Concepción: Avda. Collao Nº 1202, Casilla 5-C - C.P: 4081112. Fono: +56-413111286

Chillán: Avda. Andrés Bello N° 720, Casilla 447 - C.P: 3800708. Fono: +56-422463000

ciencia-abierta@ubiobio.cl

©2024 Todos los Derechos Reservados – Universidad del Bío-Bío