Logotipo del repositorio
  • English
  • Español
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
Inicio Ciencia Abierta UBB Comunidades y Colecciones Repositorio ANID Estadísticas
  • English
  • Español
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "SEBASTIÁN IGNACIO GUAJARDO HERRERA"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Imagen por defecto
    Publicación
    ASSESSING MACHINE LEARNING-BASED APPROACHES FOR SILICA CONCENTRATION ESTIMATION IN IRON FROTH FLOTATION
    (IEEE INTERNATIONAL CONFERENCE ON AUTOMÁTICA (ICA-ACCA), 2021)
    MAURICIO ALEJANDRO MONTANARES SEPÚLVEDA
    ;
    SEBASTIÁN IGNACIO GUAJARDO HERRERA
    ;
    MARÍA NATHALIE RISSO SEPÚLVEDA
    IN THE MINING INDUSTRY, SPECIFICALLY IN THE FLOTATION PROCESS, THERE IS A CHALLENGE ASSOCIATED TO NONINVASIVE, REAL-TIME CONTAMINANT AND IMPURITIES ESTIMATION. ACHIEVING PREDICTIONS ON CONTAMINANT LEVELS HAS A HIGH IMPACT ON QUALITY INSURANCE AND IT CAN HELP TECHNICIANS AND ENGINEERS TO MAKE ADJUSTMENTS IN ADVANCE TO IMPROVE THE QUALITY OF THE FINAL PRODUCT, AND THUS PROFITS. IN THIS PAPER, EXPLORATORY RESEARCH IS PERFORMED ON THE PROBLEM OF SILICA CONCENTRATE ESTIMATION FOR IRON ORE FROTH FLOTATION USING MACHINE LEARNING TECHNIQUES, WITH THE GOAL TO IDENTIFY ALGORITHMS THAT MAY BE SUITABLE FOR INDUSTRY SOFT SENSOR DEVELOPMENT. FOR THIS PURPOSE, A PUBLIC, REAL PROCESS DATASET IS USED AND THREE DIFFERENT MACHINE LEARNING TECHNIQUES ARE IMPLEMENTED: RANDOM FOREST (RF), LONG SHORT-TERM MEMORY (LSTM) AND GATED RECURRENT UNIT (GRU). THE TECHNIQUES WERE IMPLEMENTED, TESTED AND COMPARED IN TERMS OF THEIR ERROR PERCENTAGE, MEAN ABSOLUTE ERROR, MEAN SQUARE ERROR, AND ROOT MEAN SQUARE ERROR. OBTAINED RESULTS SHOW ACCEPTABLE PERFORMANCE FOR LTSM AND GRU IMPLEMENTATIONS, BEING LSTM NETWORK THE OUT-PERFORMER WITH ERRORS BELOW 9%.

Concepción: Avda. Collao Nº 1202, Casilla 5-C - C.P: 4081112. Fono: +56-413111286

Chillán: Avda. Andrés Bello N° 720, Casilla 447 - C.P: 3800708. Fono: +56-422463000

ciencia-abierta@ubiobio.cl

©2024 Todos los Derechos Reservados – Universidad del Bío-Bío