Examinando por Autor "CATALINA ISABEL VALENZUELA NÚÑEZ"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
- PublicaciónPREDICCIÓN DEL AUSENTISMO EN CITAS MÉDICAS MEDIANTE MACHINE LEARNING(UNIVERSIDAD, CIENCIA Y TECNOLOGÍA, 2023)
;CATALINA ISABEL VALENZUELA NÚÑEZ ;GUILLERMO OCTAVIO LATORRE NUÑEZFREDY HUMBERTO TRONCOSO ESPINOSALA PROGRAMACIÓN DE CITAS MÉDICAS ES UNA ACTIVIDAD DE GRAN IMPORTANCIA EN UN HOSPITAL, YA QUE SE DEBEN UTILIZAR DE FORMA EFICIENTE DIFERENTES CAPITALES, TANTO HUMANOS COMO MATERIALES. UNO DE LOS PROBLEMAS DE ESTE TRABAJO ES LA INASISTENCIA DE UN PACIENTE, LO QUE DISMINUYE LA EFICIENCIA DEL USO DE ESTOS RECURSOS. PARA HACER FRENTE A ESTO, DIVERSOS ESTUDIOS HAN PROPUESTO CONSIDERAR EL ?AUSENTISMO? PARA PROGRAMAR LAS CITAS MÉDICAS. SIN EMBARGO, PREDECIRLO ES UNA TAREA COMPLEJA. ESTA INVESTIGACIÓN PROPONE LA PREDICCIÓN DE LA NO ASISTENCIA A LA CITACIÓN PARA TRES ÁREAS MÉDICAS DEL HOSPITAL CLÍNICO REGIONAL DR. GUILLERMO GRANT BENAVENTE EN LA CIUDAD DE CONCEPCIÓN, CHILE. PARA ESTO SE ENTRENAN Y EVALÚAN CINCO ALGORITMOS DE MACHINE LEARNING. EL MEJOR MODELO ENTRENADO LOGRÓ SER UNA HERRAMIENTA PREDICTIVA DEL NIVEL DE AUSENTISMO DE UN PACIENTE PARA SU PRÓXIMA CONSULTA Y CARACTERIZAR A AQUELLOS PACIENTES CON MAYORES NIVELES DE AUSENTISMO. - PublicaciónPREVENTING HEALTH RISKS THROUGH INTELLIGENT MEDICAL APPOINTMENT MANAGEMENT USING DISEASE AND ATTENDANCE PROPENSITY(IEEE ACCESS, 2024)
;FREDY HUMBERTO TRONCOSO ESPINOSA ;GUILLERMO OCTAVIO LATORRE NUÑEZ ;CATALINA ISABEL VALENZUELA NÚÑEZJUAN MIGUEL ORLANDO SAN MARTÍN DURÁNINTELLIGENT MANAGEMENT OF MEDICAL APPOINTMENTS CAN SIGNIFICANTLY ENHANCE PATIENT CARE AND REDUCE HEALTH RISKS. BY LEVERAGING DISEASE AND ATTENDANCE PROPENSITY, OUR SYSTEM AIMS TO MINIMIZE THE LIKELIHOOD OF PATIENTS DEVELOPING SERIOUS CONDITIONS DUE TO MISSED APPOINTMENTS BY STRATEGICALLY SCHEDULING THOSE AT HIGHER RISK. FOR ITS DEVELOPMENT, THE METHODOLOGY BEGINS WITH THE FORMULATION OF AN OPTIMIZATION MODEL, USING ASSUMED VALUES FOR DISEASE AND ATTENDANCE PROPENSITY TO ESTABLISH AN INITIAL, EFFICIENT SCHEDULING OF APPOINTMENTS. SUBSEQUENTLY, MACHINE LEARNING ALGORITHMS ARE APPLIED TO PATIENT HISTORICAL DATA TO OBTAIN MORE PRECISE AND REALISTIC ESTIMATES OF THESE PROPENSITIES, WHICH ARE THEN INTEGRATED INTO THE MODEL TO ADJUST APPOINTMENT ALLOCATION ACCORDING TO EACH PATIENT?S INDIVIDUAL RISK. THE RESULTS DEMONSTRATE THAT THE INTELLIGENT MEDICAL APPOINTMENT MANAGEMENT MODEL SIGNIFICANTLY OUTPERFORMS RANDOM SCHEDULING, WHICH SIMULATES CURRENT REAL-WORLD PRACTICES WITHOUT THE USE OF AN INTELLIGENT PATIENT ASSIGNMENT SYSTEM. PATIENTS SCHEDULED BY THE INTELLIGENT MODEL SHOW HIGHER MEAN PROPENSITIES TO ATTEND APPOINTMENTS AND TO DEVELOP DISEASES, ENSURING THAT MEDICAL RESOURCES ARE ALLOCATED EFFICIENTLY TO THOSE IN GREATEST NEED. STATISTICAL VALIDATION CONFIRMS THE MODEL?S EFFECTIVENESS, SHOWING SIGNIFICANT DIFFERENCES IN SCHEDULING OUTCOMES BETWEEN THE INTELLIGENT AND RANDOM MODELS. THIS APPROACH HIGHLIGHTS THE POTENTIAL TO REDUCE HEALTH RISKS AMONG A GROUP OF PATIENTS BY UTILIZING BOTH THEIR MEDICAL HISTORIES AND SYNTHETIC DATA FOR MORE ACCURATE PREDICTIONS AND EFFECTIVE SCHEDULING. - PublicaciónSMART MEDICAL APPOINTMENT SCHEDULING: OPTIMIZATION, MACHINE LEARNING, AND OVERBOOKING TO ENHANCE RESOURCE UTILIZATION(IEEE ACCESS, 2024)
;CATALINA ISABEL VALENZUELA NÚÑEZ ;GUILLERMO OCTAVIO LATORRE NUÑEZFREDY HUMBERTO TRONCOSO ESPINOSASCHEDULING MEDICAL APPOINTMENTS PLAYS A FUNDAMENTAL ROLE IN MANAGING PATIENT FLOW AND ENSURING HIGH-QUALITY CARE. HOWEVER, NO-SHOWS CAN SIGNIFICANTLY DISRUPT THIS PROCESS AND AFFECT PATIENT CARE. TO ADDRESS THIS CHALLENGE, HEALTHCARE FACILITIES CAN ADOPT DIFFERENT STRATEGIES, INCLUDING OVERBOOKING IN MEDICAL CONSULTATIONS. WHILE THIS REDUCES THE RISK OF UNUSED SLOTS, IT CAN GENERATE ASSOCIATED COSTS AND AFFECT THE PERCEPTION OF SERVICE QUALITY. IN THIS ARTICLE, WE PROPOSE AN INTEGER LINEAR OPTIMIZATION MODEL THAT MAXIMIZES THE EXPECTED UTILITY OF A MEDICAL CENTER, CONSIDERING THE RISK OF NO-SHOWS AND OVERBOOKING. FOR THIS PURPOSE, MACHINE LEARNING IS USED TO ESTIMATE THE PROPENSITY OF EACH PATIENT TO ATTEND THEIR MEDICAL APPOINTMENT, USING REAL DATA FROM THREE MEDICAL SPECIALTIES OF A HOSPITAL. THE RESULTS OF THE APPLICATION DEMONSTRATE THE MODEL?S ABILITY TO ASSIGN APPOINTMENTS AND PERFORM OVERBOOKING EFFICIENTLY AND IN AN ORGANIZED MANNER, IMPLYING AN IMPROVEMENT IN THE UTILITY OF A MEDICAL CENTER AND A POSITIVE IMPACT ON THE PERCEPTION OF THE QUALITY OF CARE.









