Publicación:
ERROR ESTIMATES FOR THE FINITE VOLUME DISCRETIZATION FOR THE POROUS MEDIUM EQUATION

dc.creatorOCTAVIO PAULO VERA VILLAGRÁN
dc.date2010
dc.date.accessioned2025-01-10T14:38:26Z
dc.date.available2025-01-10T14:38:26Z
dc.date.issued2010
dc.description.abstractWE ANALYZE THE CONVERGENCE OF A NUMERICAL SCHEME FOR A CLASS OF DEGENERATE PARABOLIC PROBLEMS MODELLING REACTIONS IN POROUS MEDIA, AND INVOLVING A NONLINEAR, POSSIBLY VANISHING DIFFUSION. THE SCHEME INVOLVES THE KIRCHHOFF TRANSFORMATION OF THE REGULARIZED NONLINEARITY, AS WELL AS AN EULER IMPLICIT TIME STEPPING AND TRIANGLE BASED FINITE VOLUMES. WE PROVE THE CONVERGENCE OF THE APPROACH BY GIVING ERROR ESTIMATES IN TERMS OF THE DISCRETIZATION AND REGULARIZATION PARAMETER.
dc.formatapplication/pdf
dc.identifier.doi10.1016/j.cam.2009.08.071
dc.identifier.issn1879-1778
dc.identifier.issn0377-0427
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/8314
dc.languagespa
dc.publisherJOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
dc.relation.uri10.1016/j.cam.2009.08.071
dc.rightsPUBLICADA
dc.titleERROR ESTIMATES FOR THE FINITE VOLUME DISCRETIZATION FOR THE POROUS MEDIUM EQUATION
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
Archivos