Publicación:
ASYMPTOTIC BEHAVIOR OF A FLEXIBLE STRUCTURE WITH CATTANEO TYPE OF THERMAL EFFECT

dc.creatorAMELIE RAMBAUD
dc.creatorOCTAVIO PAULO VERA VILLAGRÁN
dc.date2016
dc.date.accessioned2025-01-10T14:32:30Z
dc.date.available2025-01-10T14:32:30Z
dc.date.issued2016
dc.description.abstractWE CONSIDER VIBRATIONS OF A NON UNIFORM FLEXIBLE STRUCTURE MODELED BY A D VISCOELASTIC EQUATION WITH KELVIN?VOIGT, COUPLED WITH AN EXPECTED DISSIPATIVE EFFECT : HEAT CONDUCTION GOVERNED BY CATTANEO?S LAW (SECOND SOUND). WE ESTABLISH THE WELL-POSEDNESS OF THE SYSTEM AND WE PROVE THE STABILIZATION TO BE EXPONENTIAL FOR ONE SET OF BOUNDARY CONDITIONS, AND AT LEAST POLYNOMIAL FOR ANOTHER SET OF BOUNDARY CONDITIONS. TWO DIFFERENT METHODS ARE USED: THE ENERGY METHOD AND ANOTHER MORE ORIGINAL, USING THE SEMIGROUP APPROACH AND STUDYING THE RESOLVENT OF THE SYSTEM.
dc.formatapplication/pdf
dc.identifier.doi10.1016/j.indag.2016.03.001
dc.identifier.issn1872-6100
dc.identifier.issn0019-3577
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/7880
dc.languagespa
dc.publisherINDAGATIONES MATHEMATICAE-NEW SERIES
dc.relation.uri10.1016/j.indag.2016.03.001
dc.rightsPUBLICADA
dc.titleASYMPTOTIC BEHAVIOR OF A FLEXIBLE STRUCTURE WITH CATTANEO TYPE OF THERMAL EFFECT
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
ubb.SedeCONCEPCIÓN
Archivos