Publicación:
A C1-C0 CONFORMING VIRTUAL ELEMENT DISCRETIZATION FOR THE TRANSMISSION EIGENVALUE PROBLEM

dc.creatorDAVID ANDRÉS MORA HERRERA
dc.date2021
dc.date.accessioned2025-01-10T15:24:03Z
dc.date.available2025-01-10T15:24:03Z
dc.date.issued2021
dc.description.abstractIN THIS STUDY, WE PRESENT AND ANALYZE A VIRTUAL ELEMENT DISCRETIZATION FOR A NONSELFADJOINT FOURTH-ORDER EIGENVALUE PROBLEM DERIVED FROM THE TRANSMISSION EIGENVALUE PROBLEM. USING SUITABLE PROJECTION OPERATORS, THE SESQUILINEAR FORMS ARE DISCRETIZED BY ONLY USING THE PROPOSED DEGREES OF FREEDOM ASSOCIATED WITH THE VIRTUAL SPACES. UNDER STANDARD ASSUMPTIONS ON THE POLYGONAL MESHES, WE SHOW THAT THE RESULTING SCHEME PROVIDES A CORRECT APPROXIMATION OF THE SPECTRUM AND PROVE AN OPTIMAL-ORDER ERROR ESTIMATE FOR THE EIGENFUNCTIONS AND A DOUBLE ORDER FOR THE EIGENVALUES. FINALLY, WE PRESENT SOME NUMERICAL EXPERIMENTS ILLUSTRATING THE BEHAVIOR OF THE VIRTUAL SCHEME ON DIFFERENT FAMILIES OF MESHES.
dc.formatapplication/pdf
dc.identifier.doi10.1007/s40687-021-00291-2
dc.identifier.issn2522-0144
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/11837
dc.languagespa
dc.publisherRESEARCH IN THE MATHEMATICAL SCIENCES
dc.relation.uri10.1007/s40687-021-00291-2
dc.rightsPUBLICADA
dc.titleA C1-C0 CONFORMING VIRTUAL ELEMENT DISCRETIZATION FOR THE TRANSMISSION EIGENVALUE PROBLEM
dc.title.alternativeUNA DISCRETIZACIÓN DE ELEMENTOS VIRTUALES CONFORMES C1-C0 PARA EL PROBLEMA DEL VALOR PROPIO DE TRANSMISIÓN
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
Archivos