Publicación:
A NUMERICAL METHOD FOR A HEAT CONDUCTION MODEL IN A DOUBLE-PANE WINDOW

dc.creatorALEX TELLO HUANCA
dc.creatorESPERANZA LOZADA GUIDICHI
dc.creatorANÍBAL CORONEL PÉREZ
dc.date2022
dc.date.accessioned2025-01-10T15:32:14Z
dc.date.available2025-01-10T15:32:14Z
dc.date.issued2022
dc.description.abstractIN THIS ARTICLE, WE PROPOSE A ONE-DIMENSIONAL HEAT CONDUCTION MODEL FOR A DOUBLE-PANE WINDOW WITH A TEMPERATURE-JUMP BOUNDARY CONDITION AND A THERMAL LAGGING INTERFACIAL EFFECT CONDITION BETWEEN LAYERS. WE CONSTRUCT A SECOND-ORDER ACCURATE FINITE DIFFERENCE SCHEME TO SOLVE THE HEAT CONDUCTION PROBLEM. THE DESIGNED SCHEME IS MAINLY BASED ON APPROXIMATIONS SATISFYING THE FACTS THAT ALL INNER GRID POINTS HAS SECOND-ORDER TEMPORAL AND SPATIAL TRUNCATION ERRORS, WHILE AT THE BOUNDARY POINTS AND AT INTER-FACIAL POINTS HAS SECOND-ORDER TEMPORAL TRUNCATION ERROR AND FIRST-ORDER SPATIAL TRUNCATION ERROR, RESPECTIVELY. WE PROVE THAT THE FINITE DIFFERENCE SCHEME INTRODUCED IS UNCONDITIONALLY STABLE, CONVERGENT, AND HAS A RATE OF CONVERGENCE TWO IN SPACE AND TIME FOR THE L?-NORM. MOREOVER, WE GIVE A NUMERICAL EXAMPLE TO CONFIRM OUR THEORETICAL RESULTS.
dc.formatapplication/pdf
dc.identifier.doi10.3390/axioms11080422
dc.identifier.issn2075-1680
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/12482
dc.languagespa
dc.publisherAXIOMS
dc.relation.uri10.3390/axioms11080422
dc.rightsPUBLICADA
dc.subjectUNCONDITIONAL NUMERICAL METHOD
dc.subjectHEAT CONDUCTION
dc.subjectFINITE DIFFERENCE METHOD
dc.subjectDOUBLE-PANE
dc.titleA NUMERICAL METHOD FOR A HEAT CONDUCTION MODEL IN A DOUBLE-PANE WINDOW
dc.typeARTÍCULO
dspace.entity.typePublication
oaire.fundingReferenceUBB- UNIVERSIDAD DEL BÍO-BÍO
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.Otra ReparticionDEPARTAMENTO DE CIENCIAS BASICAS
ubb.Otra ReparticionDEPARTAMENTO DE CIENCIAS BASICAS
ubb.SedeCONCEPCIÓN
ubb.SedeCHILLÁN
ubb.SedeCHILLÁN
Archivos