Publicación:
ANALYSIS OF A SEIR-KS MATHEMATICAL MODEL FOR COMPUTER VIRUS PROPAGATION IN A PERIODIC ENVIRONMENT

dc.creatorIAN ERWIN HESS DUQUE
dc.creatorANÍBAL CORONEL PÉREZ
dc.creatorFRANCISCO EDUARDO NOVOA MUÑOZ
dc.date2020
dc.date.accessioned2025-01-10T15:14:57Z
dc.date.available2025-01-10T15:14:57Z
dc.date.issued2020
dc.description.abstractIN THIS WORK WE DEVELOP A STUDY OF POSITIVE PERIODIC SOLUTIONS FOR A MATHEMATICAL MODEL OF THE DYNAMICS OF COMPUTER VIRUS PROPAGATION. WE PROPOSE A GENERALIZED COMPARTMENT MODEL OF SEIR-KS TYPE, SINCE WE CONSIDER THAT THE POPULATION IS PARTITIONED IN FIVE CLASSES: SUSCEPTIBLE (S); EXPOSED (E); INFECTED (I); RECOVERED (R); AND KILL SIGNALS (K), AND ASSUME THAT THE RATES OF VIRUS PROPAGATION ARE TIME DEPENDENT FUNCTIONS. THEN, WE INTRODUCE A SUFFICIENT CONDITION FOR THE EXISTENCE OF POSITIVE PERIODIC SOLUTIONS OF THE GENERALIZED SEIR-KS MODEL. THE PROOF OF THE MAIN RESULTS ARE BASED ON A PRIORI ESTIMATES OF THE SEIR-KS SYSTEM SOLUTIONS AND THE APPLICATION OF COINCIDENCE DEGREE THEORY. MOREOVER, WE PRESENT AN EXAMPLE OF A GENERALIZED SYSTEM SATISFYING THE SUFFICIENT CONDITION.
dc.formatapplication/pdf
dc.identifier.doi10.3390/math8050761
dc.identifier.issn2227-7390
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/11118
dc.languagespa
dc.publisherMATHEMATICS
dc.relation.uri10.3390/math8050761
dc.rightsPUBLICADA
dc.titleANALYSIS OF A SEIR-KS MATHEMATICAL MODEL FOR COMPUTER VIRUS PROPAGATION IN A PERIODIC ENVIRONMENT
dc.title.alternativeANÁLISIS DE UN MODELO MATEMÁTICO SEIR-KS PARA LA PROPAGACIÓN DE VIRUS INFORMÁTICOS EN UN ENTORNO PERIÓDICO
dc.typeARTÍCULO
dspace.entity.typePublication
oaire.fundingReferenceUBB- UNIVERSIDAD DEL BÍO-BÍO
oaire.fundingReferenceUBB- UNIVERSIDAD DEL BÍO-BÍO
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE CIENCIAS BASICAS
ubb.Otra ReparticionDEPARTAMENTO DE ESTADISTICA
ubb.SedeCONCEPCIÓN
ubb.SedeCHILLÁN
ubb.SedeCONCEPCIÓN
Archivos