Publicación:
LIMIT CYCLES BIFURCATING OF KOLMOGOROV SYSTEMS IN R-2 AND IN R-3

dc.creatorYOHANNA PAULINA MANCILLA MARTÍNEZ
dc.date2020
dc.date.accessioned2025-01-10T15:14:21Z
dc.date.available2025-01-10T15:14:21Z
dc.date.issued2020
dc.description.abstractIN THIS WORK WE CONSIDER THE KOLMOGOROV SYSTEM OF DEGREE 3 IN R2 AND R3 HAVING AN EQUILIBRIUM POINT IN THE POSITIVE QUADRANT AND OCTANT, RESPECTIVELY. WE PROVIDE SUFFICIENT CONDITIONS IN ORDER THAT THE EQUILIBRIUM POINT WILL BE A HOPF POINT FOR THE PLANAR CASE AND A ZERO-HOPF POINT FOR THE SPATIAL ONE. WE STUDY THE LIMIT CYCLES BIFURCATING FROM THESE EQUILIBRIA USING AVERAGING THEORY OF SECOND AND FIRST ORDER, RESPECTIVELY. WE NOTE THAT THE EQUILIBRIUM POINT IS LOCATED IN THE QUADRANT OR OCTANT WHERE THE KOLMOGOROV SYSTEMS HAVE BIOLOGICAL MEANING.
dc.formatapplication/pdf
dc.identifier.doi10.1016/j.cnsns.2020.105401
dc.identifier.issn1878-7274
dc.identifier.issn1007-5704
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/11070
dc.languagespa
dc.publisherCommunications in Nonlinear Science and Numerical Simulation
dc.relation.uri10.1016/j.cnsns.2020.105401
dc.rightsPUBLICADA
dc.titleLIMIT CYCLES BIFURCATING OF KOLMOGOROV SYSTEMS IN R-2 AND IN R-3
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
Archivos