Publicación:
DYNAMICS AND BIFURCATION OF PASSIVE TRACERS ADVECTED BY A RING OF POINT VORTICES ON A SPHERE

Imagen por defecto
Fecha
2020
Título de la revista
ISSN de la revista
Título del volumen
Editor
JOURNAL OF MATHEMATICAL PHYSICS
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
WE CONSIDER THE DYNAMICS OF A PASSIVE TRACER, ADVECTED BY THE PRESENCE OF A LATITUDINAL RING OF IDENTICAL POINT VORTICES. THE CORRESPONDING INSTANTANEOUS MOTION IS MODELED BY A ONE DEGREE OF FREEDOM HAMILTONIAN SYSTEM. SUCH A DYNAMICS PRESENTS A RICH VARIETY OF BEHAVIORS WITH RESPECT TO THE NUMBER OF VORTICES, N, AND THE RING?S CO-LATITUDE, ?O?OR, EQUIVALENTLY, ITS VERTICAL POSITION QO = COS??O. WE CARRY OUT A COMPLETE DESCRIPTION OF THE GLOBAL PHASE PORTRAIT FOR THE CASES N = 2, 3, 4 BY DETERMINING EQUILIBRIUM POINTS, THEIR STABILITY, AND BIFURCATIONS WITH RESPECT TO THE PARAMETER ?O, AND BY CHARACTERIZING THE SEPARATRIX SKELETON. MOREOVER, FOR N ? 5, WE PROVE THE EXISTENCE OF A VALUE OF BIFURCATION ?ON SUCH THAT WHEN ?O = ?ON (?O = ? ? ?ON, RESPECTIVELY) THE SOUTH (NORTH, RESPECTIVELY) POLE BECOMES A N-BIFURCATION POINT, I.E., A SYMMETRIC WEB OF N CENTERS AND N SADDLES BIFURCATES FROM THE CORRESPONDING POLE.
Descripción
Palabras clave
Citación