Publicación:
A C0-NONCONFORMING VIRTUAL ELEMENT METHODS FOR THE VIBRATION AND BUCKLING PROBLEMS OF THIN PLATES

dc.creatorDAVID ANDRÉS MORA HERRERA
dc.date2022
dc.date.accessioned2025-01-10T15:46:33Z
dc.date.available2025-01-10T15:46:33Z
dc.date.issued2022
dc.description.abstractIN THIS WORK, WE STUDY THE C0-NONCONFORMING VEM FOR THE FOURTH-ORDER EIGENVALUE PROBLEMS MODELING THE VIBRATION AND BUCKLING PROBLEMS OF THIN PLATES WITH CLAMPED BOUNDARY CONDITIONS ON GENERAL SHAPED POLYGONAL DOMAIN, POSSIBLY EVEN NONCONVEX DOMAIN. BY EMPLOYING THE ENRICHING OPERATOR, WE HAVE DERIVED THE CONVERGENCE ANALYSIS IN DISCRETE H2 SEMINORM, AND H1, L2 NORMS FOR BOTH PROBLEMS. WE USE THE BABUSKA-OSBORN SPECTRAL THEORY (BABUSKA AND OSBORN, 1991), TO SHOW THAT THE INTRODUCED SCHEMES PROVIDE WELL APPROXIMATION OF THE SPECTRUM AND PROVE OPTIMAL ORDER OF RATE OF CONVERGENCE FOR EIGENFUNCTIONS AND DOUBLE ORDER OF RATE OF CONVERGENCE FOR EIGENVALUES. FINALLY, NUMERICAL RESULTS ARE PRESENTED TO SHOW THE GOOD PERFORMANCE OF THE METHOD ON DIFFERENT POLYGONAL MESHES.(C) 2022 ELSEVIER B.V. ALL RIGHTS RESERVED.
dc.formatapplication/pdf
dc.identifier.doi10.1016/j.cma.2022.115763
dc.identifier.issn1879-2138
dc.identifier.issn0045-7825
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/13600
dc.languagespa
dc.publisherCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
dc.relation.uri10.1016/j.cma.2022.115763
dc.rightsPUBLICADA
dc.subjectVirtual element method
dc.subjectVibration
dc.subjectSpectral problems
dc.subjectNonconforming
dc.subjectError estimates
dc.subjectBuckling
dc.titleA C0-NONCONFORMING VIRTUAL ELEMENT METHODS FOR THE VIBRATION AND BUCKLING PROBLEMS OF THIN PLATES
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
Archivos