Publicación:
STABILITY OF THE POLAR EQUILIBRIA IN A RESTRICTED THREE-BODY PROBLEM ON THE SPHERE

dc.creatorJAIME EDUARDO ANDRADE BUSTOS
dc.creatorJOSÉ CLAUDIO VIDAL DÍAZ
dc.date2018
dc.date.accessioned2025-01-10T14:57:55Z
dc.date.available2025-01-10T14:57:55Z
dc.date.issued2018
dc.description.abstractIN THIS PAPER WE CONSIDER A SYMMETRIC RESTRICTED CIRCULAR THREE-BODY PROBLEM ON THE SURFACE S-2 OF CONSTANT GAUSSIAN CURVATURE KAPPA = 1. THIS PROBLEM CONSISTS IN THE DESCRIPTION OF THE DYNAMICS OF AN INFINITESIMAL MASS PARTICLE ATTRACTED BY TWO PRIMARIES WITH IDENTICAL MASSES, ROTATING WITH CONSTANT ANGULAR VELOCITY IN A FIXED PARALLEL OF RADIUS A IS AN ELEMENT OF(0, 1). IT IS VERIFIED THAT BOTH POLES OF S-2 ARE EQUILIBRIUM POINTS FOR ANY VALUE OF THE PARAMETER A. THIS PROBLEM IS MODELED THROUGH A HAMILTONIAN SYSTEM OF TWO DEGREES OF FREEDOM DEPENDING ON THE PARAMETER A. USING RESULTS CONCERNING NONLINEAR STABILITY, THE TYPE OF LYAPUNOV STABILITY (NONLINEAR) IS PROVIDED FOR THE POLAR EQUILIBRIA, ACCORDING TO THE RESONANCES. IT IS VERIFIED THAT FOR THE NORTH POLE THERE ARE TWO VALUES OF BIFURCATION (ON THE STABILITY) A = ROOT 4-ROOT 2/2 AND A = ROOT 2/3, WHILE THE SOUTH POLE HAS ONE VALUE OF BIFURCATION A = ROOT 3/2.
dc.formatapplication/pdf
dc.identifier.doi10.1134/S1560354718010070
dc.identifier.issn1468-4845
dc.identifier.issn1560-3547
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/9772
dc.languagespa
dc.publisherREGULAR & CHAOTIC DYNAMICS
dc.relation.uri10.1134/S1560354718010070
dc.rightsPUBLICADA
dc.titleSTABILITY OF THE POLAR EQUILIBRIA IN A RESTRICTED THREE-BODY PROBLEM ON THE SPHERE
dc.title.alternativeESTABILIDAD DE LOS EQUILIBRIOS POLARES EN UN PROBLEMA RESTRINGIDO DE TRES CUERPOS EN LA ESFERA
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
ubb.SedeCONCEPCIÓN
Archivos