Publicación:
EXISTENCE AND UNIQUENESS OF STRONG SOLUTION FOR THE INCOMPRESSIBLE MICROPOLAR FLUID EQUATIONS IN DOMAINS OF R3

dc.creatorMARKO ANTONIO ROJAS MEDAR
dc.date2010
dc.date.accessioned2025-01-10T14:39:31Z
dc.date.available2025-01-10T14:39:31Z
dc.date.issued2010
dc.description.abstractWE CONSIDER THE INITIAL BOUNDARY VALUE PROBLEM FOR THE SYSTEM OF EQUATIONS DESCRIBING THE NONSTATIONARY FLOW OF AN INCOMPRESSIBLE MICROPOLAR FLUID IN A DOMAIN OMEGA OF R3. UNDER HYPOTHESES THAT ARE SIMILAR TO THE NAVIER-STOKES EQUATIONS, BY USING AN ITERATIVE SCHEME, WE PROVE THE EXISTENCE AND UNIQUENESS OF STRONG SOLUTION IN L P (OMEGA), FOR P > 3.
dc.formatapplication/pdf
dc.identifier.doi10.1007/s11565-010-0094-0
dc.identifier.issn0430-3202
dc.identifier.issn1827-1510
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/8395
dc.languagespa
dc.publisherANNALI DELL'UNIVERSITA DI FERRARA
dc.relation.uri10.1007/s11565-010-0094-0
dc.rightsPUBLICADA
dc.titleEXISTENCE AND UNIQUENESS OF STRONG SOLUTION FOR THE INCOMPRESSIBLE MICROPOLAR FLUID EQUATIONS IN DOMAINS OF R3
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE CIENCIAS BASICAS
ubb.SedeCHILLÁN
Archivos