Publicación:
ASSESSING MACHINE LEARNING AND DEEP LEARNING-BASED APPROACHES FOR SAG MILL ENERGY CONSUMPTION

dc.creatorCRISTHIAN ALEJANDRO AGUILERA CARRASCO
dc.creatorMARÍA NATHALIE RISSO SEPÚLVEDA
dc.creatorPEDRO GERÓNIMO CAMPOS SOTO
dc.date2022
dc.date.accessioned2025-01-10T15:30:31Z
dc.date.available2025-01-10T15:30:31Z
dc.date.issued2022
dc.description.abstractENERGY CONSUMPTION REPRESENTS A HIGH OPERATIONAL COST IN MINING OPERATIONS. ORE SIZE REDUCTION STAGE IS THE MAIN CONSUMER IN THAT PROCESS, WHERE THE SEMIAUTOGENOUS MILL (SAG) IS ONE OF THE MAIN COMPONENTS. THE IMPLEMENTATION OF CONTROL AND AUTOMATION STRATEGIES THAT CAN ACHIEVE PRODUCTION GOALS ALONG WITH ENERGY EFFICIENCY ARE A COMMON GOAL IN CONCENTRATOR PLANTS; HOWEVER, DESIGNING SUCH CONTROLS REQUIRES A PROPER UNDERSTANDING OF PROCESS DYNAMICS WHICH ARE HIGHLY COMPLEX. THIS WORK STUDIES MACHINE LEARNING AND DEEP LEARNING STRATEGIES THAT CAN BE USED TO GENERATE MODELS FOR PREDICTING ENERGY CONSUMPTION, USING KEY PROCESS VARIABLES. IN PARTICULAR, THE APPLICATION OF K-NEAREST NEIGHBORS REGRESSOR (KNN-REG), POLYNOMIAL REGRESSION (PR), SUPPORT VECTOR REGRESSION (SVR) AND LONG-SHORT TERM MEMORY (LSTM) STRATEGIES FOR ENERGY PREDICTION OVER SAG MILL PROCESS DATA IS DEVELOPED IN ORDER TO IDENTIFY CONFIGURATIONS SUITABLE TO BE IMPLEMENTED FOR REAL-TIME PREDICTION INTEGRATED OVER INDUSTRIAL DATA INFRASTRUCTURES. ALL TECHNIQUES ARE COMPARED IN TERMS OF ROOT MEAN SQUARE ERROR (RMSE) WHERE, ALTHOUGH ALL THE MODELS ACHIEVED ACCEPTABLE PERFORMANCE, BEST RESULTS WERE OBTAINED BY A LSTM IMPLEMENTATION WHICH YIELDED AN ERROR OF LESS THAN 4% ASSOCIATED TO ENERGY PREDICTION.
dc.formatapplication/pdf
dc.identifier.doi10.1109/CHILECON54041.2021.9702951
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/12347
dc.languagespa
dc.publisher2021 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (CHILECON)
dc.relation.uri10.1109/CHILECON54041.2021.9702951
dc.rightsPUBLICADA
dc.titleASSESSING MACHINE LEARNING AND DEEP LEARNING-BASED APPROACHES FOR SAG MILL ENERGY CONSUMPTION
dc.title.alternativeEVALUAR LOS ENFOQUES BASADOS EN EL APRENDIZAJE AUTOMÁTICO Y EL APRENDIZAJE PROFUNDO PARA EL CONSUMO DE ENERGÍA DE LA FÁBRICA SAG
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionFACULTAD DE CIENCIAS EMPRESARIALES
ubb.Otra ReparticionDEPARTAMENTO DE INGENIERIA ELECTRICA Y ELECTRONICA
ubb.Otra ReparticionDEPARTAMENTO DE SISTEMAS DE INFORMACION
ubb.SedeCONCEPCIÓN
ubb.SedeCONCEPCIÓN
ubb.SedeCONCEPCIÓN
Archivos