Publicación:
A FINITE ELEMENT METHOD FOR THE BUCKLING PROBLEM OF SIMPLY SUPPORTED KIRCHHOFF PLATES

dc.creatorDAVID ANDRÉS MORA HERRERA
dc.date2015
dc.date.accessioned2025-01-10T14:29:28Z
dc.date.available2025-01-10T14:29:28Z
dc.date.issued2015
dc.description.abstractTHE AIM OF THIS PAPER IS TO DEVELOP A FINITE ELEMENT METHOD TO APPROXIMATE THE BUCKLING PROBLEM OF SIMPLY SUPPORTED KIRCHHOFF PLATES SUBJECTED TO GENERAL PLANE STRESS TENSOR. WE INTRODUCE AN AUXILIARY VARIABLE W:=ALFA U (WITH U REPRESENTING THE DISPLACEMENT OF THE PLATE) TO WRITE A VARIATIONAL FORMULATION OF THE SPECTRAL PROBLEM. WE PROPOSE A CONFORMING DISCRETIZATION OF THE PROBLEM, WHERE THE UNKNOWNS ARE APPROXIMATED BY PIECEWISE LINEAR AND CONTINUOUS FINITE ELEMENTS. WE SHOW THAT THE RESULTING SCHEME PROVIDES A CORRECT APPROXIMATION OF THE SPECTRUM AND PROVE OPTIMAL ORDER ERROR ESTIMATES FOR THE EIGENFUNCTIONS AND A DOUBLE ORDER FOR THE EIGENVALUES. FINALLY, WE PRESENT SOME NUMERICAL EXPERIMENTS SUPPORTING OUR THEORETICAL RESULTS.
dc.formatapplication/pdf
dc.identifier.doi10.1016/j.cam.2015.02.018
dc.identifier.issn1879-1778
dc.identifier.issn0377-0427
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/7662
dc.languagespa
dc.publisherJOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
dc.relation.uri10.1016/j.cam.2015.02.018
dc.rightsPUBLICADA
dc.subjectSPECTRAL ANALYSIS
dc.subjectKIRCHHOFF PLATES
dc.subjectFINITE ELEMENTS
dc.subjectERROR ESTIMATES
dc.subjectBUCKLING PROBLEM
dc.titleA FINITE ELEMENT METHOD FOR THE BUCKLING PROBLEM OF SIMPLY SUPPORTED KIRCHHOFF PLATES
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
Archivos