Publicación:
SELF-TESTING MUTUALLY UNBIASED BASES IN HIGHER DIMENSIONS WITH SPACE-DIVISION MULTIPLEXING OPTICAL FIBER TECHNOLOGY

dc.creatorGUSTAVO CAÑAS CARDONA
dc.date2021
dc.date.accessioned2025-01-10T15:26:14Z
dc.date.available2025-01-10T15:26:14Z
dc.date.issued2021
dc.description.abstractIN THE DEVICE-INDEPENDENT QUANTUM-INFORMATION APPROACH, THE IMPLEMENTATION OF A GIVEN TASK CAN BE SELF-TESTED SOLELY FROM THE RECORDED STATISTICS AND WITHOUT DETAILED MODELS FOR THE EMPLOYED DEVICES. EVEN THOUGH EXPERIMENTALLY DEMANDING, IT PROVIDES APPEALING VERIFICATION SCHEMES FOR ADVANCED QUANTUM TECHNOLOGIES THAT NATURALLY FULFIL THE ASSOCIATED REQUIREMENTS. IN THIS WORK, WE EXPERIMENTALLY STUDY WHETHER SELF-TESTING PROTOCOLS CAN BE ADOPTED TO CERTIFY THE PROPER FUNCTIONING OF QUANTUM DEVICES BUILT WITH MODERN SPACE-DIVISION MULTIPLEXING OPTICAL FIBER TECHNOLOGY. SPECIFICALLY, WE CONSIDER THE PREPARE-AND-MEASURE PROTOCOL OF FARKAS AND KANIEWSKI [PHYS. REV. A 99, 032316 (2019)] FOR SELF-TESTING MEASUREMENTS CORRESPONDING TO MUTUALLY UNBIASED BASES (MUBS) IN A DIMENSION D > 2 . IN OUR SCHEME, THE STATE PREPARATION AND MEASUREMENT STAGES ARE IMPLEMENTED USING A MULTIARM INTERFEROMETER BUILT WITH MULTICORE OPTICAL FIBERS AND RELATED COMPONENTS. DUE TO THE HIGH OVERLAP OF THE INTERFEROMETER?S OPTICAL MODES ACHIEVED WITH THIS TECHNOLOGY, WE ARE ABLE TO REACH THE REQUIRED VISIBILITIES FOR SELF-TESTING THE IMPLEMENTATION OF TWO FOUR-DIMENSIONAL MUBS. WE ALSO QUANTIFY TWO OPERATIONAL QUANTITIES OF THE MEASUREMENTS: (I) THE INCOMPATIBILITY ROBUSTNESS, CONNECTED TO BELL VIOLATIONS, AND (II) THE RANDOMNESS EXTRACTABLE FROM THE OUTCOMES. SINCE MUBS LIE AT THE CORE OF SEVERAL QUANTUM-INFORMATION PROTOCOLS, OUR RESULTS ARE OF PRACTICAL INTEREST FOR FUTURE QUANTUM WORKS RELYING ON SPACE-DIVISION MULTIPLEXING OPTICAL FIBERS.
dc.formatapplication/pdf
dc.identifier.doi10.1103/PhysRevApplied.15.014028
dc.identifier.issn2331-7019
dc.identifier.issn2331-7019
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/12010
dc.languagespa
dc.publisherPhysical Review Applied
dc.relation.uri10.1103/PhysRevApplied.15.014028
dc.rightsPUBLICADA
dc.titleSELF-TESTING MUTUALLY UNBIASED BASES IN HIGHER DIMENSIONS WITH SPACE-DIVISION MULTIPLEXING OPTICAL FIBER TECHNOLOGY
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE FISICA
ubb.SedeCONCEPCIÓN
Archivos