Publicación:
A PRIORI ERROR ANALYSIS FOR A MIXED VEM DISCRETIZATION OF THE SPECTRAL PROBLEM FOR THE LAPLACIAN OPERATOR

dc.creatorFELIPE ANDRÉS LEPE ARAYA
dc.date2021
dc.date.accessioned2025-01-10T15:20:04Z
dc.date.available2025-01-10T15:20:04Z
dc.date.issued2021
dc.description.abstractTHE AIM OF THE PRESENT WORK IS TO DERIVE ERROR ESTIMATES FOR THE LAPLACE EIGENVALUE PROBLEM IN MIXED FORM, IMPLEMENTING A VIRTUAL ELEMENT METHOD. WITH THE AID OF THE THEORY FOR NON-COMPACT OPERATORS, WE PROVE THAT THE PROPOSED METHOD IS SPURIOUS FREE AND CONVERGENT. OPTIMAL ORDER OF CONVERGENCE FOR THE EIGENVALUES AND EIGENFUNCTIONS ARE DERIVED. FINALLY, WE REPORT NUMERICAL TESTS TO CONFIRM THE THEORETICAL RESULTS TOGETHER WITH A RIGOROUS COMPUTATIONAL ANALYSIS OF THE EFFECTS OF THE STABILIZATION PARAMETER, INHERENT FOR THE VIRTUAL ELEMENT METHODS, IN THE COMPUTATION OF THE SPECTRUM.
dc.formatapplication/pdf
dc.identifier.doi10.1007/s10092-021-00412-x
dc.identifier.issn1126-5434
dc.identifier.issn0008-0624
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/11521
dc.languagespa
dc.publisherCALCOLO
dc.relation.uri10.1007/s10092-021-00412-x
dc.rightsPUBLICADA
dc.titleA PRIORI ERROR ANALYSIS FOR A MIXED VEM DISCRETIZATION OF THE SPECTRAL PROBLEM FOR THE LAPLACIAN OPERATOR
dc.title.alternativeANÁLISIS DE ERRORES A PRIORI PARA UNA DISCRETIZACIÓN VEM MIXTA DEL PROBLEMA ESPECTRAL PARA EL OPERADOR LAPLACIO
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
Archivos