Publicación:
ERROR ESTIMATES FOR A VORTICITY-BASED VELOCITY-STRESS FORMULATION OF THE STOKES EIGENVALUE PROBLEM

Imagen por defecto
Fecha
2022
Título de la revista
ISSN de la revista
Título del volumen
Editor
JOURNAL OF COMPUTATIONAL MATHEMATICS
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
THE AIM OF THIS PAPER IS TO ANALYZE A MIXED FORMULATION FOR THE TWO DIMENSIONAL STOKES EIGENVALUE PROBLEM WHERE THE UNKNOWNS ARE THE STRESS AND THE VELOCITY, WHEREAS THE PRESSURE CAN BE RECOVERED WITH A SIMPLE POSTPROCESS OF THE STRESS. THE STRESS TENSOR IS WRITTEN IN TERMS OF THE VORTICITY OF THE FLUID, LEADING TO AN ALTERNATIVE MIXED FORMULATION THAT INCORPORATES THIS PHYSICAL FEATURE. WE PROPOSE A MIXED NUMERICAL METHOD WHERE THE STRESS IS APPROXIMATED WITH SUITABLE NÉDELEC FINITE ELEMENTS, WHEREAS THE VELOCITY IS APPROXIMATED WITH PIECEWISE POLYNOMIALS OF DEGREE . WITH THE AID OF THE COMPACT OPERATORS THEORY WE DERIVE CONVERGENCE OF THE METHOD AND SPECTRAL CORRECTNESS. MOREOVER, WE PROPOSE A RELIABLE AND EFFICIENT A POSTERIORI ERROR ESTIMATOR FOR OUR SPECTRAL PROBLEM IN ORDER TO PROVIDE AN ADAPTIVE STRATEGY TO ACHIEVE THE OPTIMAL ORDER OF CONVERGENCE FOR NON SUFFICIENT SMOOTH EIGENFUNCTIONS. WE REPORT NUMERICAL TESTS WHERE THE SPECTRUM IS COMPUTED, TOGETHER WITH A COMPUTATIONAL ANALYSIS FOR THE PROPOSED ESTIMATOR. IN ADDITION, WE USE THE CORRESPONDING ERROR ESTIMATOR TO DRIVE AN ADAPTIVE SCHEME, AND WE REPORT THE RESULTS OF A NUMERICAL TEST, THAT ALLOW US TO ASSESS THE PERFORMANCE OF THIS APPROACH.
Descripción
Palabras clave
STOKES EQUATIONS, MIXED PROBLEMS, ERROR ESTIMATES, EIGENVALUE PROBLEMS, A POSTERIORI ERROR ESTIMATES
Citación