Publicación:
ON THE POSITIVE PERIODIC SOLUTIONS OF A CLASS OF LIÉNARD EQUATIONS WITH REPULSIVE SINGULARITIES IN DEGENERATE CASE

dc.creatorJOSÉ DAMIÁN GODOY SOTO
dc.date2023
dc.date.accessioned2025-01-10T15:38:44Z
dc.date.available2025-01-10T15:38:44Z
dc.date.issued2023
dc.description.abstractIN THIS PAPER, WE STUDY THE EXISTENCE, MULTIPLICITY AND DYNAMICS OF POSITIVE PERIODIC SOLUTIONS TO A GENERALIZED LIÉNARD EQUATION WITH REPULSIVE SINGULARITIES. THE AMBROSETTI-PRODI TYPE RESULT IS PROVED IN THE ABSENCE OF THE SO-CALLED ANTICOERCIVITY CONDITION. FURTHERMORE, WITH S AS A PARAMETER, UNDER SOME CONDITIONS ON THE FUNCTION H, IT HAS BEEN SHOWN THAT FOR ANY M > 1 THERE EXISTS SM ? R SUCH THAT THE EQUATION X?? + F (X)X? + H(T, X) = S HAS TWO POSITIVE T -PERIODIC SOLUTIONS U1(·; S) AND U2(·; S) SATISFYING MIN{U1(T; S) : T ? [0, T ]} > M AND MIN{U2(T; S) : T ? [0, T ]} < 1/M FOR EVERY S < S M . AS A BY-PRODUCT OF THE PROPERTY, WE OBTAIN SUFFICIENT CONDITIONS TO GUARANTEE THE EXISTENCE OF POSITIVE T -PERIODIC SOLUTIONS OF INDEFINITE DIFFERENTIAL EQUATIONS.
dc.formatapplication/pdf
dc.identifier.doi10.1016/j.jde.2023.05.039
dc.identifier.issn1090-2732
dc.identifier.issn0022-0396
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/12992
dc.languagespa
dc.publisherJOURNAL OF DIFFERENTIAL EQUATIONS
dc.relation.uri10.1016/j.jde.2023.05.039
dc.rightsPUBLICADA
dc.subjectRepulsive singularity
dc.subjectPeriodic solution
dc.subjectLiénard equation
dc.subjectDegree theory
dc.titleON THE POSITIVE PERIODIC SOLUTIONS OF A CLASS OF LIÉNARD EQUATIONS WITH REPULSIVE SINGULARITIES IN DEGENERATE CASE
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.SedeCONCEPCIÓN
Archivos