Publicación: ON THE POSITIVE PERIODIC SOLUTIONS OF A CLASS OF LIÉNARD EQUATIONS WITH REPULSIVE SINGULARITIES IN DEGENERATE CASE
dc.creator | JOSÉ DAMIÁN GODOY SOTO | |
dc.date | 2023 | |
dc.date.accessioned | 2025-01-10T15:38:44Z | |
dc.date.available | 2025-01-10T15:38:44Z | |
dc.date.issued | 2023 | |
dc.description.abstract | IN THIS PAPER, WE STUDY THE EXISTENCE, MULTIPLICITY AND DYNAMICS OF POSITIVE PERIODIC SOLUTIONS TO A GENERALIZED LIÉNARD EQUATION WITH REPULSIVE SINGULARITIES. THE AMBROSETTI-PRODI TYPE RESULT IS PROVED IN THE ABSENCE OF THE SO-CALLED ANTICOERCIVITY CONDITION. FURTHERMORE, WITH S AS A PARAMETER, UNDER SOME CONDITIONS ON THE FUNCTION H, IT HAS BEEN SHOWN THAT FOR ANY M > 1 THERE EXISTS SM ? R SUCH THAT THE EQUATION X?? + F (X)X? + H(T, X) = S HAS TWO POSITIVE T -PERIODIC SOLUTIONS U1(·; S) AND U2(·; S) SATISFYING MIN{U1(T; S) : T ? [0, T ]} > M AND MIN{U2(T; S) : T ? [0, T ]} < 1/M FOR EVERY S < S M . AS A BY-PRODUCT OF THE PROPERTY, WE OBTAIN SUFFICIENT CONDITIONS TO GUARANTEE THE EXISTENCE OF POSITIVE T -PERIODIC SOLUTIONS OF INDEFINITE DIFFERENTIAL EQUATIONS. | |
dc.format | application/pdf | |
dc.identifier.doi | 10.1016/j.jde.2023.05.039 | |
dc.identifier.issn | 1090-2732 | |
dc.identifier.issn | 0022-0396 | |
dc.identifier.uri | https://repositorio.ubiobio.cl/handle/123456789/12992 | |
dc.language | spa | |
dc.publisher | JOURNAL OF DIFFERENTIAL EQUATIONS | |
dc.relation.uri | 10.1016/j.jde.2023.05.039 | |
dc.rights | PUBLICADA | |
dc.subject | Repulsive singularity | |
dc.subject | Periodic solution | |
dc.subject | Liénard equation | |
dc.subject | Degree theory | |
dc.title | ON THE POSITIVE PERIODIC SOLUTIONS OF A CLASS OF LIÉNARD EQUATIONS WITH REPULSIVE SINGULARITIES IN DEGENERATE CASE | |
dc.type | ARTÍCULO | |
dspace.entity.type | Publication | |
ubb.Estado | PUBLICADA | |
ubb.Sede | CONCEPCIÓN |