Publicación:
BOUNDED AND PERIODIC SOLUTIONS FOR ABSTRACT FUNCTIONAL DIFFERENCE EQUATIONS WITH SUMMABLE DICHOTOMIES: APPLICATIONS TO VOLTERRA SYSTEMS

dc.creatorJOSÉ CLAUDIO VIDAL DÍAZ
dc.date2018
dc.date.accessioned2025-01-10T14:59:15Z
dc.date.available2025-01-10T14:59:15Z
dc.date.issued2018
dc.description.abstractUSING THE EXISTENCE OF SUMMABLE DICHOTOMIES IN LINEAR FUNCTIONAL DIFFERENCE EQUATIONS, THE CONTRACTION PRINCIPLE AND THE SCHAUDER FIXED POINT THEOREM, WE OBTAIN THE EXISTENCE OF BOUNDED AND PERIODIC SOLUTIONS UNDER QUITE GENERAL HYPOTHESES FOR NONLINEAR FUNCTIONAL DIFFERENCE EQUATIONS ON PHASE SPACES. APPLICATIONS OF OUR MAIN RESULTS TO VOLTERRA EQUATIONS ARE GIVEN. MOREOVER, EXAMPLES ARE ALSO GIVEN TO ILLUSTRATE OBTAINED RESULTS.
dc.formatapplication/pdf
dc.identifier.issn2065-0264
dc.identifier.issn1220-3874
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/9878
dc.languagespa
dc.publisherBulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie
dc.rightsPUBLICADA
dc.titleBOUNDED AND PERIODIC SOLUTIONS FOR ABSTRACT FUNCTIONAL DIFFERENCE EQUATIONS WITH SUMMABLE DICHOTOMIES: APPLICATIONS TO VOLTERRA SYSTEMS
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
Archivos