Publicación:
(W,C)-PERIODIC FUNCTIONS AND MILD SOLUTIONS TO ABSTRACT FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS

dc.creatorADRIÁN ALEJANDRO GÓMEZ GAETE
dc.date2018
dc.date.accessioned2025-01-10T14:58:19Z
dc.date.available2025-01-10T14:58:19Z
dc.date.issued2018
dc.description.abstractIN THIS PAPER WE STUDY A NEW CLASS OF FUNCTIONS, WHICH WE CALL $(\OMEGA,C)$-PERIODIC FUNCTIONS. THIS COLLECTION INCLUDES PERIODIC, ANTI-PERIODIC, BLOCH AND UNBOUNDED FUNCTIONS. WE PROVE THAT THE SET CONFORMED BY THESE FUNCTIONS IS A BANACH SPACE WITH A SUITABLE NORM. FURTHERMORE, WE SHOW SEVERAL PROPERTIES OF THIS CLASS OF FUNCTIONS AS THE CONVOLUTION INVARIANCE. WE PRESENT SOME EXAMPLES AND A COMPOSITION RESULT. AS AN APPLICATION, WE ESTABLISH SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE AND UNIQUENESS OF $(\OMEGA,C)$-PERIODIC MILD SOLUTIONS TO A FRACTIONAL EVOLUTION EQUATION.
dc.formatapplication/pdf
dc.identifier.doi10./14232/ejqtde.2018.1.16
dc.identifier.issn1417-3875
dc.identifier.issn1417-3875
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/9804
dc.languagespa
dc.publisherElectronic Journal of Qualitative Theory of Differential Equations
dc.relation.uri10./14232/ejqtde.2018.1.16
dc.rightsPUBLICADA
dc.title(W,C)-PERIODIC FUNCTIONS AND MILD SOLUTIONS TO ABSTRACT FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
Archivos