Publicación:
DYNAMICS AND PERIODIC SOLUTIONS IN CUBIC POLYNOMIAL HAMILTONIAN SYSTEMS

dc.creatorDANTE CARRASCO OLIVERA
dc.creatorJOSÉ CLAUDIO VIDAL DÍAZ
dc.date2019
dc.date.accessioned2025-01-10T15:05:24Z
dc.date.available2025-01-10T15:05:24Z
dc.date.issued2019
dc.description.abstractWE CONSIDER THE HAMILTONIAN FUNCTION DEFINED BY THE CUBIC POLYNOMIAL H = 1/2(Y(1)(2) + Y(2)(2)) + V(X(1), X(2)) WHERE THE POTENTIAL V(X) = DELTA V-2(X(1), X(2)) + V-3(X(1), X(2)), WITH V-2(X(1), X(2)) = 1/2(X(1)(2) + X(2)(2)) AND V-3(X(1), X(2)) = 1/3X(1)(3) + F X(1)X(2)(2) + GX(2)(3), WITH F AND G ARE REAL PARAMETERS SUCH THAT F NOT EQUAL 0 AND DELTA IS 0 OR 1. OUR OBJECTIVE IS TO STUDY THE NUMBER AND BIFURCATIONS OF THE EQUILIBRIA AND ITS TYPE OF STABILITY. MOREOVER, WE OBTAIN THE EXISTENCE OF PERIODIC SOLUTIONS CLOSE TO SOME EQUILIBRIUM POINTS AND AN ISOLATED SYMMETRIC PERIODIC SOLUTION DISTANT OF THE EQUILIBRIA FOR SOME CONVENIENT REGION OF THE PARAMETERS. WE POINT OUT THE ROLE OF THE PARAMETERS AND THE DIFFERENCE BETWEEN THE HOMOGENEOUS POTENTIAL CASE (DELTA = 0) AND THE GENERAL CASE (DELTA = 1).
dc.formatapplication/pdf
dc.identifier.doi10.1007/s12346-018-0291-2
dc.identifier.issn1662-3592
dc.identifier.issn1575-5460
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/10367
dc.languagespa
dc.publisherQUALITATIVE THEORY OF DYNAMICAL SYSTEMS
dc.relation.uri10.1007/s12346-018-0291-2
dc.rightsPUBLICADA
dc.titleDYNAMICS AND PERIODIC SOLUTIONS IN CUBIC POLYNOMIAL HAMILTONIAN SYSTEMS
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
ubb.SedeCONCEPCIÓN
Archivos