Publicación:
GPU ACCELERATING ALGORITHMS FOR THREE-LAYERED HEAT CONDUCTION SIMULATIONS

dc.creatorNICOLÁS RODRIGO MURÚA ITURRA
dc.date2024
dc.date.accessioned2025-01-10T15:53:25Z
dc.date.available2025-01-10T15:53:25Z
dc.date.issued2024
dc.description.abstractIN THIS PAPER, WE CONSIDER THE FINITE DIFFERENCE APPROXIMATION FOR A ONE-DIMENSIONAL MATHEMATICAL MODEL OF HEAT CONDUCTION IN A THREE-LAYERED SOLID WITH INTERFACIAL CONDITIONS FOR TEMPERATURE AND HEAT FLUX BETWEEN THE LAYERS. THE FINITE DIFFERENCE SCHEME IS UNCONDITIONALLY STABLE, CONVERGENT, AND EQUIVALENT TO THE SOLUTION OF TWO LINEAR ALGEBRAIC SYSTEMS. WE EVALUATE VARIOUS METHODS FOR SOLVING THE INVOLVED LINEAR SYSTEMS BY ANALYZING DIRECT AND ITERATIVE SOLVERS, INCLUDING GPU-ACCELERATED APPROACHES USING CUPY AND PYCUDA. WE EVALUATE PERFORMANCE AND SCALABILITY AND CONTRIBUTE TO ADVANCING COMPUTATIONAL TECHNIQUES FOR MODELING COMPLEX PHYSICAL PROCESSES ACCURATELY AND EFFICIENTLY.
dc.formatapplication/pdf
dc.identifier.doi10.3390/math12223503
dc.identifier.issn2227-7390
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/14129
dc.languagespa
dc.publisherMATHEMATICS
dc.relation.uri10.3390/math12223503
dc.rightsPUBLICADA
dc.subjectsparse linear systems
dc.subjectparallel processing
dc.subjecthigh-performance computing
dc.subjectheat transfer
dc.subjectGPU acceleration
dc.subjectfinite difference method
dc.subjectcomputational efficiency
dc.titleGPU ACCELERATING ALGORITHMS FOR THREE-LAYERED HEAT CONDUCTION SIMULATIONS
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
Archivos