Publicación:
TIME-STEP HEAT PROBLEM ON THE MESH: ASYMPTOTIC BEHAVIOR AND DECAY RATES

dc.creatorSILVIA ANDREA RUEDA SÁNCHEZ
dc.date2023
dc.date.accessioned2025-01-10T15:38:45Z
dc.date.available2025-01-10T15:38:45Z
dc.date.issued2023
dc.description.abstractIN THIS ARTICLE, WE STUDY THE ASYMPTOTIC BEHAVIOR AND DECAY OF THE SOLUTION OF THE FULLY DISCRETE HEAT PROBLEM. WE SHOW BASIC PROPERTIES OF ITS SOLUTIONS, SUCH AS THE MASS CONSERVATION PRINCIPLE AND THEIR MOMENTS, AND WE COMPARE THEM TO THE KNOWN ONES FOR THE CONTINUOUS ANALOGUE PROBLEMS. WE PRESENT THE FUNDAMENTAL SOLUTION, WHICH IS GIVEN IN TERMS OF SPHERICAL HARMONICS, AND WE STATE POINTWISE AND ?P ESTIMATES FOR THAT. SUCH CONSIDERATIONS ALLOW TO PROVE DECAY AND LARGE-TIME BEHAVIOR RESULTS FOR THE SOLUTIONS OF THE FULLY DISCRETE HEAT PROBLEM, GIVING THE CORRESPONDING RATES OF CONVERGENCE ON ?P SPACES.
dc.formatapplication/pdf
dc.identifier.doi10.1515/forum-2022-0334
dc.identifier.issn1435-5337
dc.identifier.issn0933-7741
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/12993
dc.languagespa
dc.publisherFORUM MATHEMATICUM
dc.relation.uri10.1515/forum-2022-0334
dc.rightsPUBLICADA
dc.subjectlarge-time behavior
dc.subjectfundamental solution
dc.subjectDiscrete heat equation
dc.subjectdecay of solutions
dc.titleTIME-STEP HEAT PROBLEM ON THE MESH: ASYMPTOTIC BEHAVIOR AND DECAY RATES
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
Archivos