Publicación:
DYNAMICS AND BIFURCATIONS OF A MODIFIED LESLIE-GOWER-TYPE MODEL CONSIDERING A BEDDINGTON- DEANGELIS FUNCTIONAL RESPONSE

dc.creatorJOSÉ CLAUDIO VIDAL DÍAZ
dc.date2019
dc.date.accessioned2025-01-10T15:11:08Z
dc.date.available2025-01-10T15:11:08Z
dc.date.issued2019
dc.description.abstractIN THIS PAPER, A PLANAR SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS IS CONSIDERED, WHICH IS A MODIFIED LESLIE-GOWER MODEL, CONSIDERING A BEDDINGTON-DEANGELIS FUNCTIONAL RESPONSE. IT GENERATES A COMPLEX DYNAMICS OF THE PREDATOR-PREY INTERACTIONS ACCORDING TO THE ASSOCIATED PARAMETERS. FROM THE SYSTEM OBTAINED, WE CHARACTERIZE ALL THE EQUILIBRIA AND ITS LOCAL BEHAVIOR, AND THE EXISTENCE OF A TRAPPING SET IS PROVED. WE DESCRIBE DIFFERENT TYPES OF BIFURCATIONS (SUCH AS HOPF, BOGDANOV-TAKENS, AND HOMOCLINIC BIFURCATION), AND THE EXISTENCE OF LIMIT CYCLES IS SHOWN. ANALYTIC PROOFS ARE PROVIDED FOR ALL RESULTS. ECOLOGICAL IMPLICATIONS AND A SET OF NUMERICAL SIMULATIONS SUPPORTING THE MATHEMATICAL RESULTS ARE ALSO PRESENTED.
dc.formatapplication/pdf
dc.identifier.doi10.1002/mma.5577
dc.identifier.issn1099-1476
dc.identifier.issn0170-4214
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/10825
dc.languagespa
dc.publisherMATHEMATICAL METHODS IN THE APPLIED SCIENCES
dc.relation.uri10.1002/mma.5577
dc.rightsPUBLICADA
dc.subjectstability
dc.subjectpredator-prey model
dc.subjectlimit cycles
dc.subjectHopf bifurcation
dc.subjecthomoclinic bifurcation
dc.subjectBogdanov-Takens bifurcation
dc.subjectBeddington-DeAngelis functional response
dc.titleDYNAMICS AND BIFURCATIONS OF A MODIFIED LESLIE-GOWER-TYPE MODEL CONSIDERING A BEDDINGTON- DEANGELIS FUNCTIONAL RESPONSE
dc.title.alternativeDINÁMICA Y BIFURCACIONES DE UN MODELO MODIFICADO DE TIPO LESLIE-GOWER CONSIDERANDO UNA RESPUESTA FUNCIONAL DE BEDDINGTON-DEANGELIS
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
Archivos