Publicación:
A FINITE ELEMENT ANALYSIS OF A PSEUDOSTRESS FORMULATION FOR THE STOKES EIGENVALUE PROBLEM

dc.creatorDAVID ANDRÉS MORA HERRERA
dc.date2015
dc.date.accessioned2025-01-10T14:29:27Z
dc.date.available2025-01-10T14:29:27Z
dc.date.issued2015
dc.description.abstractIN THIS PAPER WE ANALYSE A FINITE ELEMENT APPROXIMATION OF THE STOKES EIGENVALUE PROBLEM. WE INTRODUCE A VARIATIONAL FORMULATION RELYING ONLY ON THE PSEUDOSTRESS TENSOR AND PROPOSE A DISCRETIZATION BY MEANS OF THE LOWEST-ORDER BREZZI?DOUGLAS?MARINI MIXED FINITE ELEMENT. HOWEVER, SIMILAR RESULTS HOLD TRUE FOR OTHER H(DIV)-CONFORMING ELEMENTS, LIKE RAVIART?THOMAS ELEMENTS. WE SHOW THAT THE RESULTING SCHEME PROVIDES A CORRECT APPROXIMATION OF THE SPECTRUM AND PROVE OPTIMAL-ORDER ERROR ESTIMATES. FINALLY, WE REPORT SOME NUMERICAL TESTS SUPPORTING OUR THEORETICAL RESULTS.
dc.formatapplication/pdf
dc.identifier.doi10.1093/imanum/dru006
dc.identifier.issn1464-3642
dc.identifier.issn0272-4979
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/7661
dc.languagespa
dc.publisherIMA JOURNAL OF NUMERICAL ANALYSIS
dc.relation.uri10.1093/imanum/dru006
dc.rightsPUBLICADA
dc.titleA FINITE ELEMENT ANALYSIS OF A PSEUDOSTRESS FORMULATION FOR THE STOKES EIGENVALUE PROBLEM
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
Archivos