Publicación:
STABILITY AND CONVERGENCE FOR A COMPLETE MODEL OF MASS DIFFUSION

Imagen por defecto
Fecha
2011
Título de la revista
ISSN de la revista
Título del volumen
Editor
APPLIED NUMERICAL MATHEMATICS
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
WE PROPOSE A FULLY DISCRETE SCHEME FOR APPROXIMATING A THREE-DIMENSIONAL, STRONGLY NONLINEAR MODEL OF MASS DIFFUSION, ALSO CALLED THE COMPLETE KAZHIKHOV?SMAGULOV MODEL. THE SCHEME USES A FINITE-ELEMENT APPROXIMATION FOR ALL UNKNOWNS (DENSITY, VELOCITY AND PRESSURE), EVEN THOUGH THE DENSITY LIMIT, SOLUTION OF THE CONTINUOUS PROBLEM, BELONGS TO . A FIRST-ORDER TIME DISCRETIZATION IS USED SUCH THAT, AT EACH TIME STEP, ONE ONLY NEEDS TO SOLVE TWO DECOUPLED LINEAR PROBLEMS FOR THE DISCRETE DENSITY AND THE VELOCITY?PRESSURE, SEPARATELY.
Descripción
Palabras clave
Citación