Publicación:
STABILITY AND CONVERGENCE FOR A COMPLETE MODEL OF MASS DIFFUSION

dc.creatorROBERTO CARLOS CABRALES
dc.date2011
dc.date.accessioned2025-01-10T14:50:50Z
dc.date.available2025-01-10T14:50:50Z
dc.date.issued2011
dc.description.abstractWE PROPOSE A FULLY DISCRETE SCHEME FOR APPROXIMATING A THREE-DIMENSIONAL, STRONGLY NONLINEAR MODEL OF MASS DIFFUSION, ALSO CALLED THE COMPLETE KAZHIKHOV?SMAGULOV MODEL. THE SCHEME USES A FINITE-ELEMENT APPROXIMATION FOR ALL UNKNOWNS (DENSITY, VELOCITY AND PRESSURE), EVEN THOUGH THE DENSITY LIMIT, SOLUTION OF THE CONTINUOUS PROBLEM, BELONGS TO . A FIRST-ORDER TIME DISCRETIZATION IS USED SUCH THAT, AT EACH TIME STEP, ONE ONLY NEEDS TO SOLVE TWO DECOUPLED LINEAR PROBLEMS FOR THE DISCRETE DENSITY AND THE VELOCITY?PRESSURE, SEPARATELY.
dc.formatapplication/pdf
dc.identifier.doi10.1016/j.apnum.2011.06.017
dc.identifier.issn1873-5460
dc.identifier.issn0168-9274
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/9228
dc.languagespa
dc.publisherAPPLIED NUMERICAL MATHEMATICS
dc.relation.uri10.1016/j.apnum.2011.06.017
dc.rightsPUBLICADA
dc.titleSTABILITY AND CONVERGENCE FOR A COMPLETE MODEL OF MASS DIFFUSION
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE CIENCIAS BASICAS
ubb.SedeCHILLÁN
Archivos