Publicación:
CONFORMING AND NONCONFORMING VIRTUAL ELEMENT METHODS FOR FOURTH ORDER NONLOCAL REACTION DIFFUSION EQUATION

Imagen por defecto
Fecha
2023
Título de la revista
ISSN de la revista
Título del volumen
Editor
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
IN THIS WORK, WE HAVE DESIGNED CONFORMING AND NONCONFORMING VIRTUAL ELEMENT METHODS (VEM) TO APPROXIMATE NON-STATIONARY NONLOCAL BIHARMONIC EQUATION ON GENERAL SHAPED DOMAIN. BY EMPLOYING FAEDO?GALERKIN TECHNIQUE, WE HAVE PROVED THE EXISTENCE AND UNIQUENESS OF THE CONTINUOUS WEAK FORMULATION. UPON APPLYING BROUWER?S FIXED POINT THEOREM, THE WELL-POSEDNESS OF THE FULLY DISCRETE SCHEME IS DERIVED. FURTHER, FOLLOWING [J. HUANG AND Y. YU, A MEDIUS ERROR ANALYSIS FOR NONCONFORMING VIRTUAL ELEMENT METHODS FOR POISSON AND BIHARMONIC EQUATIONS, J. COMPUT. APPL. MATH. 386 (2021) 113229], WE HAVE INTRODUCED ENRICHMENT OPERATOR AND DERIVED A PRIORI ERROR ESTIMATES FOR FULLY DISCRETE SCHEMES ON POLYGONAL DOMAINS, NOT NECESSARILY CONVEX. THE PROPOSED ERROR ESTIMATES ARE JUSTIFIED WITH SOME BENCHMARK EXAMPLES.
Descripción
Palabras clave
Virtual element method, fourth order nonlinear PDE, error estimates
Citación