Publicación:
CONFORMING AND NONCONFORMING VIRTUAL ELEMENT METHODS FOR FOURTH ORDER NONLOCAL REACTION DIFFUSION EQUATION

dc.creatorVERÓNICA JULIA ANAYA DOMÍNGUEZ
dc.creatorDAVID ANDRÉS MORA HERRERA
dc.date2023
dc.date.accessioned2025-01-10T15:42:16Z
dc.date.available2025-01-10T15:42:16Z
dc.date.issued2023
dc.description.abstractIN THIS WORK, WE HAVE DESIGNED CONFORMING AND NONCONFORMING VIRTUAL ELEMENT METHODS (VEM) TO APPROXIMATE NON-STATIONARY NONLOCAL BIHARMONIC EQUATION ON GENERAL SHAPED DOMAIN. BY EMPLOYING FAEDO?GALERKIN TECHNIQUE, WE HAVE PROVED THE EXISTENCE AND UNIQUENESS OF THE CONTINUOUS WEAK FORMULATION. UPON APPLYING BROUWER?S FIXED POINT THEOREM, THE WELL-POSEDNESS OF THE FULLY DISCRETE SCHEME IS DERIVED. FURTHER, FOLLOWING [J. HUANG AND Y. YU, A MEDIUS ERROR ANALYSIS FOR NONCONFORMING VIRTUAL ELEMENT METHODS FOR POISSON AND BIHARMONIC EQUATIONS, J. COMPUT. APPL. MATH. 386 (2021) 113229], WE HAVE INTRODUCED ENRICHMENT OPERATOR AND DERIVED A PRIORI ERROR ESTIMATES FOR FULLY DISCRETE SCHEMES ON POLYGONAL DOMAINS, NOT NECESSARILY CONVEX. THE PROPOSED ERROR ESTIMATES ARE JUSTIFIED WITH SOME BENCHMARK EXAMPLES.
dc.formatapplication/pdf
dc.identifier.doihttps://doi.org/10.1142/S0218202523500483
dc.identifier.issn1793-6314
dc.identifier.issn0218-2025
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/13269
dc.languagespa
dc.publisherMATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES
dc.relation.urihttps://doi.org/10.1142/S0218202523500483
dc.rightsPUBLICADA
dc.subjectVirtual element method
dc.subjectfourth order nonlinear PDE
dc.subjecterror estimates
dc.titleCONFORMING AND NONCONFORMING VIRTUAL ELEMENT METHODS FOR FOURTH ORDER NONLOCAL REACTION DIFFUSION EQUATION
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
ubb.SedeCONCEPCIÓN
Archivos