PublicaciĂłn:
ON DOUBLY-GENERALIZED-TRANSMUTED DISTRIBUTIONS

dc.creatorYOLANDA MAGALY GÓMEZ OLMOS
dc.creatorDIEGO IGNACIO GALLARDO MATELUNA
dc.date2025
dc.date.accessioned2026-01-16T15:06:36Z
dc.date.available2026-01-16T15:06:36Z
dc.date.issued2025
dc.description.abstractMANY PARAMETRIC MODELS CAN BE ENRICHED BY INTRODUCING ADDITIONAL PARAMETERS THROUGH TRANSMUTATION, MIXING, OR COMPOUNDING TECHNIQUES. IN THIS PAPER, WE DEVELOP THE FRAMEWORK OF DOUBLY GENERALIZED TRANSMUTATION MODELS (DGTMS), OBTAINED BY THE REPEATED APPLICATION OF RANK TRANSMUTATION MAPS AND THEIR GENERALIZATIONS. WE SHOW THAT SEVERAL FLEXIBLE FAMILIES ALREADY AVAILABLE IN THE LITERATURE CAN BE REINTERPRETED AS INSTANCES OF DOUBLE OR MULTIPLE TRANSMUTATION, THUS UNIFYING APPARENTLY DISPARATE CONSTRUCTIONS UNDER A COMMON PERSPECTIVE. A KEY FEATURE OF DGTMS IS THEIR ABILITY TO FLEXIBLY CONTROL SYMMETRY THROUGH PARAMETERIZATION, ENABLING MORE ACCURATE MODELING OF ASYMMETRIC OR HEAVY-TAILED PHENOMENA. WE ALSO DISCUSS THE POTENTIAL EXTENSION OF THESE MODELS TO THE BIVARIATE CASE. IN ADDITION, WE INTRODUCE THE GENTRANSMUTED R PACKAGE, VERSION 1.0, WHICH PROVIDES ROUTINES FOR DATA GENERATION, PARAMETER ESTIMATION, AND MODEL COMPARISON FOR GENERALIZED TRANSMUTATION MODELS. TWO REAL DATA APPLICATIONS ILLUSTRATE THE PRACTICAL ADVANTAGES OF THIS APPROACH, HIGHLIGHTING IMPROVED MODEL FIT RELATIVE TO CLASSICAL ALTERNATIVES. OUR RESULTS UNDERSCORE THE VALUE OF TRANSMUTATION-BASED METHODS AS A SYSTEMATIC TOOL FOR GENERATING FLEXIBLE PROBABILITY DISTRIBUTIONS AND ADVANCING THEIR COMPUTATIONAL IMPLEMENTATION.
dc.formatapplication/pdf
dc.identifier.doi10.3390/sym17101606
dc.identifier.issn2073-8994
dc.identifier.issn2073-8994
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/14331
dc.language
dc.publisherSymmetry-Basel
dc.relation.uri10.3390/sym17101606
dc.rightsOPEN ACCESS
dc.subjectExponential distribution
dc.subjectMaximum likelihood
dc.subjectPareto II distribution
dc.subjectTransmutation of models
dc.titleON DOUBLY-GENERALIZED-TRANSMUTED DISTRIBUTIONS
dc.typeARTĂŤCULO
dspace.entity.typePublication
oaire.licenseConditionCC BY 4.0
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE ESTADISTICA
ubb.Otra ReparticionDEPARTAMENTO DE ESTADISTICA
ubb.SedeCONCEPCIÓN
ubb.SedeCONCEPCIÓN
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
documento_publicacion_16_01_2026_12_07_01.pdf
Tamaño:
505.06 KB
Formato:
Adobe Portable Document Format
DescripciĂłn: