Publicación:
PERIODIC SOLUTIONS IN A 2D-SYMMETRIC HAMILTONIAN SYSTEM THROUGH REDUCTION AND AVERAGING METHOD

Imagen por defecto
Fecha
2024
Título de la revista
ISSN de la revista
Título del volumen
Editor
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
WE STUDY A TYPE OF PERTURBED POLYNOMIAL HAMILTONIAN SYSTEM IN 1:1 RESONANCE. THE PERTURBATION CONSISTS OF A HOMOGENEOUS QUARTIC POTENTIAL INVARIANT BY ROTATIONS OF ?/2 RADIANS. THE EXISTENCE OF PERIODIC SOLUTIONS IS ESTABLISHED USING REDUCTION AND AVERAGING THEORIES. THE DIFFERENT TYPES OF PERIODIC SOLUTIONS, LINEAR STABILITY, AND BIFUR- CATION CURVES ARE CHARACTERIZED IN TERMS OF THE PARAMETERS. FINALLY, SOME CHOREOGRAPHY OF BIFURCATIONS ARE OBTAINED, SHOWING IN DETAIL THE EVOLUTION OF THE PHASE FLOW.
Descripción
Palabras clave
Resonant Hamiltonians and 1:1 resonance, Reeb?s theorem, periodic solutions and linear stability, normalisation and reduction, averaging
Citación