Publicación:
PERIODIC SOLUTIONS IN A 2D-SYMMETRIC HAMILTONIAN SYSTEM THROUGH REDUCTION AND AVERAGING METHOD

dc.creatorDANTE CARRASCO OLIVERA
dc.date2024
dc.date.accessioned2025-01-10T15:50:51Z
dc.date.available2025-01-10T15:50:51Z
dc.date.issued2024
dc.description.abstractWE STUDY A TYPE OF PERTURBED POLYNOMIAL HAMILTONIAN SYSTEM IN 1:1 RESONANCE. THE PERTURBATION CONSISTS OF A HOMOGENEOUS QUARTIC POTENTIAL INVARIANT BY ROTATIONS OF ?/2 RADIANS. THE EXISTENCE OF PERIODIC SOLUTIONS IS ESTABLISHED USING REDUCTION AND AVERAGING THEORIES. THE DIFFERENT TYPES OF PERIODIC SOLUTIONS, LINEAR STABILITY, AND BIFUR- CATION CURVES ARE CHARACTERIZED IN TERMS OF THE PARAMETERS. FINALLY, SOME CHOREOGRAPHY OF BIFURCATIONS ARE OBTAINED, SHOWING IN DETAIL THE EVOLUTION OF THE PHASE FLOW.
dc.formatapplication/pdf
dc.identifier.doi10.1080/14689367.2024.2349563
dc.identifier.issn1468-9375
dc.identifier.issn1468-9367
dc.identifier.urihttps://repositorio.ubiobio.cl/handle/123456789/13928
dc.languagespa
dc.publisherDYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL
dc.relation.uri10.1080/14689367.2024.2349563
dc.rightsPUBLICADA
dc.subjectResonant Hamiltonians and 1:1 resonance
dc.subjectReeb?s theorem
dc.subjectperiodic solutions and linear stability
dc.subjectnormalisation and reduction
dc.subjectaveraging
dc.titlePERIODIC SOLUTIONS IN A 2D-SYMMETRIC HAMILTONIAN SYSTEM THROUGH REDUCTION AND AVERAGING METHOD
dc.typeARTÍCULO
dspace.entity.typePublication
ubb.EstadoPUBLICADA
ubb.Otra ReparticionDEPARTAMENTO DE MATEMATICA
ubb.SedeCONCEPCIÓN
Archivos