Publicación:
MELAMINE FACED PANELS DEFECT CLASSIFICATION BEYOND THE VISIBLE SPECTRUM.

Imagen por defecto
Fecha
2018
Título de la revista
ISSN de la revista
Título del volumen
Editor
SENSORS
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
IN THIS WORK, WE EXPLORE THE USE OF IMAGES FROM DIFFERENT SPECTRAL BANDS TO CLASSIFY DEFECTS IN MELAMINE FACED PANELS, WHICH COULD APPEAR THROUGH THE PRODUCTION PROCESS. THROUGH EXPERIMENTAL EVALUATION, WE EVALUATE THE USE OF IMAGES FROM THE VISIBLE (VS), NEAR-INFRARED (NIR), AND LONG WAVELENGTH INFRARED (LWIR), TO CLASSIFY THE DEFECTS USING A FEATURE DESCRIPTOR LEARNING APPROACH TOGETHER WITH A SUPPORT VECTOR MACHINE CLASSIFIER. TWO DESCRIPTORS WERE EVALUATED, EXTENDED LOCAL BINARY PATTERNS (E-LBP) AND SURF USING A BAG OF WORDS (BOW) REPRESENTATION. THE EVALUATION WAS CARRIED ON WITH AN IMAGE SET OBTAINED DURING THIS WORK, WHICH CONTAINED FIVE DIFFERENT DEFECT CATEGORIES THAT CURRENTLY OCCURS IN THE INDUSTRY. RESULTS SHOW THAT USING IMAGES FROM BEYOND THE VISUAL SPECTRUM HELPS TO IMPROVE CLASSIFICATION PERFORMANCE IN CONTRAST WITH A SINGLE VISIBLE SPECTRUM SOLUTION.
Descripción
Palabras clave
Citación