Publicación:
LAGRANGIAN-ANTIDIFFUSIVE REMAP SCHEMES FOR NON-LOCAL MULTI-CLASS TRAFFIC FLOW MODELS

Imagen por defecto
Fecha
2020
Título de la revista
ISSN de la revista
Título del volumen
Editor
COMPUTATIONAL & APPLIED MATHEMATICS
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
THIS PAPER FOCUSES ON THE NUMERICAL APPROXIMATION OF THE SOLUTIONS OF A CLASS OF NON-LOCAL SYSTEMS IN ONE SPACE DIMENSION, ARISING IN TRAFFIC MODELING. WE PROPOSE ALTERNATIVE SIMPLE SCHEMES BY SPLITTING THE NON-LOCAL CONSERVATION LAWS INTO TWO DIFFERENT EQUATIONS, NAMELY THE LAGRANGIAN AND THE REMAP STEPS. WE PROVIDE SOME PROPERTIES AND ESTIMATES RECOVERED BY APPROXIMATING THE PROBLEM WITH THE LAGRANGIAN-ANTIDIFFUSIVE REMAP (L-AR) SCHEME, AND WE PROVE THE CONVERGENCE TO WEAK SOLUTIONS IN THE SCALAR CASE. FINALLY, WE SHOW SOME NUMERICAL SIMULATIONS ILLUSTRATING THE EFFICIENCY OF THE L-AR SCHEMES IN COMPARISON WITH CLASSICAL FIRST- AND SECOND-ORDER NUMERICAL SCHEMES.
Descripción
Palabras clave
Citación