Publicación: LAGRANGIAN-ANTIDIFFUSIVE REMAP SCHEMES FOR NON-LOCAL MULTI-CLASS TRAFFIC FLOW MODELS
dc.creator | LUIS MIGUEL VILLADA OSORIO | |
dc.date | 2020 | |
dc.date.accessioned | 2025-01-10T15:15:10Z | |
dc.date.available | 2025-01-10T15:15:10Z | |
dc.date.issued | 2020 | |
dc.description.abstract | THIS PAPER FOCUSES ON THE NUMERICAL APPROXIMATION OF THE SOLUTIONS OF A CLASS OF NON-LOCAL SYSTEMS IN ONE SPACE DIMENSION, ARISING IN TRAFFIC MODELING. WE PROPOSE ALTERNATIVE SIMPLE SCHEMES BY SPLITTING THE NON-LOCAL CONSERVATION LAWS INTO TWO DIFFERENT EQUATIONS, NAMELY THE LAGRANGIAN AND THE REMAP STEPS. WE PROVIDE SOME PROPERTIES AND ESTIMATES RECOVERED BY APPROXIMATING THE PROBLEM WITH THE LAGRANGIAN-ANTIDIFFUSIVE REMAP (L-AR) SCHEME, AND WE PROVE THE CONVERGENCE TO WEAK SOLUTIONS IN THE SCALAR CASE. FINALLY, WE SHOW SOME NUMERICAL SIMULATIONS ILLUSTRATING THE EFFICIENCY OF THE L-AR SCHEMES IN COMPARISON WITH CLASSICAL FIRST- AND SECOND-ORDER NUMERICAL SCHEMES. | |
dc.format | application/pdf | |
dc.identifier.doi | 10.1007/s40314-020-1097-9 | |
dc.identifier.issn | 1807-0302 | |
dc.identifier.issn | 0101-8205 | |
dc.identifier.uri | https://repositorio.ubiobio.cl/handle/123456789/11134 | |
dc.language | spa | |
dc.publisher | COMPUTATIONAL & APPLIED MATHEMATICS | |
dc.relation.uri | 10.1007/s40314-020-1097-9 | |
dc.rights | PUBLICADA | |
dc.title | LAGRANGIAN-ANTIDIFFUSIVE REMAP SCHEMES FOR NON-LOCAL MULTI-CLASS TRAFFIC FLOW MODELS | |
dc.title.alternative | ESQUEMAS DE REASIGNACIÓN LAGRANGIANO-ANTIDIFFUSIVE PARA MODELOS DE FLUJO DE TRÁFICO MULTICLASE NO LOCALES | |
dc.type | ARTÍCULO | |
dspace.entity.type | Publication | |
ubb.Estado | PUBLICADA | |
ubb.Otra Reparticion | DEPARTAMENTO DE MATEMATICA | |
ubb.Sede | CONCEPCIÓN |