Publicación:
A GENERALIZATION OF THE BIVARIATE GAMMA DISTRIBUTION BASED ON GENERALIZED HYPERGEOMETRIC FUNCTIONS

Imagen por defecto
Fecha
2022
Título de la revista
ISSN de la revista
Título del volumen
Editor
MATHEMATICS
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
IN THIS PAPER, WE PROVIDE A NEW BIVARIATE DISTRIBUTION OBTAINED FROM A KIBBLE-TYPE BIVARIATE GAMMA DISTRIBUTION. THE STOCHASTIC REPRESENTATION WAS OBTAINED BY THE SUM OF A KIBBLE-TYPE BIVARIATE RANDOM VECTOR AND A BIVARIATE RANDOM VECTOR BUILDED BY TWO INDEPENDENT GAMMA RANDOM VARIABLES. IN ADDITION, THE RESULTING BIVARIATE DENSITY CONSIDERS AN INFINITE SERIES OF PRODUCTS OF TWO CONFLUENT HYPERGEOMETRIC FUNCTIONS. IN PARTICULAR, WE DERIVE THE PROBABILITY AND CUMULATIVE DISTRIBUTION FUNCTIONS, THE MOMENT GENERATION AND CHARACTERISTIC FUNCTIONS, THE HAZARD, BONFERRONI AND LORENZ FUNCTIONS, AND AN APPROXIMATION FOR THE DIFFERENTIAL ENTROPY AND MUTUAL INFORMATION INDEX. NUMERICAL EXAMPLES SHOWED THE BEHAVIOR OF EXACT AND APPROXIMATED EXPRESSIONS.
Descripción
Palabras clave
Citación