Publicación:
DYNAMICS AND BIFURCATIONS OF A MODIFIED LESLIE-GOWER-TYPE MODEL CONSIDERING A BEDDINGTON- DEANGELIS FUNCTIONAL RESPONSE

Imagen por defecto
Fecha
2019
Título de la revista
ISSN de la revista
Título del volumen
Editor
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
IN THIS PAPER, A PLANAR SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS IS CONSIDERED, WHICH IS A MODIFIED LESLIE-GOWER MODEL, CONSIDERING A BEDDINGTON-DEANGELIS FUNCTIONAL RESPONSE. IT GENERATES A COMPLEX DYNAMICS OF THE PREDATOR-PREY INTERACTIONS ACCORDING TO THE ASSOCIATED PARAMETERS. FROM THE SYSTEM OBTAINED, WE CHARACTERIZE ALL THE EQUILIBRIA AND ITS LOCAL BEHAVIOR, AND THE EXISTENCE OF A TRAPPING SET IS PROVED. WE DESCRIBE DIFFERENT TYPES OF BIFURCATIONS (SUCH AS HOPF, BOGDANOV-TAKENS, AND HOMOCLINIC BIFURCATION), AND THE EXISTENCE OF LIMIT CYCLES IS SHOWN. ANALYTIC PROOFS ARE PROVIDED FOR ALL RESULTS. ECOLOGICAL IMPLICATIONS AND A SET OF NUMERICAL SIMULATIONS SUPPORTING THE MATHEMATICAL RESULTS ARE ALSO PRESENTED.
Descripción
Palabras clave
stability, predator-prey model, limit cycles, Hopf bifurcation, homoclinic bifurcation, Bogdanov-Takens bifurcation, Beddington-DeAngelis functional response
Citación