Publicación:
LIMIT CYCLES BIFURCATING OF KOLMOGOROV SYSTEMS IN R-2 AND IN R-3

Imagen por defecto
Fecha
2020
Título de la revista
ISSN de la revista
Título del volumen
Editor
Communications in Nonlinear Science and Numerical Simulation
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
IN THIS WORK WE CONSIDER THE KOLMOGOROV SYSTEM OF DEGREE 3 IN R2 AND R3 HAVING AN EQUILIBRIUM POINT IN THE POSITIVE QUADRANT AND OCTANT, RESPECTIVELY. WE PROVIDE SUFFICIENT CONDITIONS IN ORDER THAT THE EQUILIBRIUM POINT WILL BE A HOPF POINT FOR THE PLANAR CASE AND A ZERO-HOPF POINT FOR THE SPATIAL ONE. WE STUDY THE LIMIT CYCLES BIFURCATING FROM THESE EQUILIBRIA USING AVERAGING THEORY OF SECOND AND FIRST ORDER, RESPECTIVELY. WE NOTE THAT THE EQUILIBRIUM POINT IS LOCATED IN THE QUADRANT OR OCTANT WHERE THE KOLMOGOROV SYSTEMS HAVE BIOLOGICAL MEANING.
Descripción
Palabras clave
Citación