Publicación:
ON THE POSITIVE PERIODIC SOLUTIONS OF A CLASS OF LIÉNARD EQUATIONS WITH REPULSIVE SINGULARITIES IN DEGENERATE CASE

Imagen por defecto
Fecha
2023
Título de la revista
ISSN de la revista
Título del volumen
Editor
JOURNAL OF DIFFERENTIAL EQUATIONS
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
IN THIS PAPER, WE STUDY THE EXISTENCE, MULTIPLICITY AND DYNAMICS OF POSITIVE PERIODIC SOLUTIONS TO A GENERALIZED LIÉNARD EQUATION WITH REPULSIVE SINGULARITIES. THE AMBROSETTI-PRODI TYPE RESULT IS PROVED IN THE ABSENCE OF THE SO-CALLED ANTICOERCIVITY CONDITION. FURTHERMORE, WITH S AS A PARAMETER, UNDER SOME CONDITIONS ON THE FUNCTION H, IT HAS BEEN SHOWN THAT FOR ANY M > 1 THERE EXISTS SM ? R SUCH THAT THE EQUATION X?? + F (X)X? + H(T, X) = S HAS TWO POSITIVE T -PERIODIC SOLUTIONS U1(·; S) AND U2(·; S) SATISFYING MIN{U1(T; S) : T ? [0, T ]} > M AND MIN{U2(T; S) : T ? [0, T ]} < 1/M FOR EVERY S < S M . AS A BY-PRODUCT OF THE PROPERTY, WE OBTAIN SUFFICIENT CONDITIONS TO GUARANTEE THE EXISTENCE OF POSITIVE T -PERIODIC SOLUTIONS OF INDEFINITE DIFFERENTIAL EQUATIONS.
Descripción
Palabras clave
Repulsive singularity, Periodic solution, Liénard equation, Degree theory
Citación