Publicación: A FINITE ELEMENT ANALYSIS OF A PSEUDOSTRESS FORMULATION FOR THE STOKES EIGENVALUE PROBLEM

Fecha
2015
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
IMA JOURNAL OF NUMERICAL ANALYSIS
Resumen
IN THIS PAPER WE ANALYSE A FINITE ELEMENT APPROXIMATION OF THE STOKES EIGENVALUE PROBLEM. WE INTRODUCE A VARIATIONAL FORMULATION RELYING ONLY ON THE PSEUDOSTRESS TENSOR AND PROPOSE A DISCRETIZATION BY MEANS OF THE LOWEST-ORDER BREZZI?DOUGLAS?MARINI MIXED FINITE ELEMENT. HOWEVER, SIMILAR RESULTS HOLD TRUE FOR OTHER H(DIV)-CONFORMING ELEMENTS, LIKE RAVIART?THOMAS ELEMENTS. WE SHOW THAT THE RESULTING SCHEME PROVIDES A CORRECT APPROXIMATION OF THE SPECTRUM AND PROVE OPTIMAL-ORDER ERROR ESTIMATES. FINALLY, WE REPORT SOME NUMERICAL TESTS SUPPORTING OUR THEORETICAL RESULTS.